
i

Reliable Communication
in the Presence of Failures

KENNETH P. BIRMAN and THOMAS A. JOSEPH

Corn__

Th, dmdln and conuetnmm of a communication facility for • dlistribuwd comlm_r symmmat, mportad
on. Th+ facility provid_ auiq_ort for/u_-a_Pan: pmmm Ivmq_ in tim form of a family of mliabb
multicast pml_eois tha¢ can be ummlin both local- and wids-anm nmcworkLTlmm protocol, attain
hiSh Immlsof coaeurmncy, while _ q3plicstioa-qx_-_ic defiw.7 onMnat commun_ mzl
haw varyintcoa and l_rfarman_ thatdq_nd on thedqs_ otorderi_dmimd, lapm_-u_, •
protocolthatenlo_'uuca_alcklivuryon_rin_ isin_ and shown tobe• va/uabt_aJWmatJve
toconventionaluynchmnoi communicationpmtoeok.Tlm facilityalsommu_ thatthepe0a_m
belonIingto• fault.tolerantpmeum _ willob_rve consis_n¢o_rinIS ofmnlr4 a_ the

Iroupasa whot*, includinl procure failunm, rueovuri_ _ and clyumnic chanl_ to IlnX_
pmlm_ Ilk, mmmb,r rankin_ A review of mvura/u,_ for elm_ in tim _ mmm. which
suppon_ fm_-tobrmn msilimstot_cts and _ beenfL illuauxt_ _ silpsifxmstsimpfifi_tiee
of hilber Imml _lorithaw m_b potable by ourq_roech.

Caumrim ,ad Subj,_ _n_ C0.4 [Comim_P-Commuaieatiou Nmm_rlm]: Dimilmm,d
Sys_m__ app/kats_m_, _ _mbma; C.4 [Comlmms. Sylsma OrlaalzaUoa]:
Perfo_ of Syxcmn6--_/ab_y, m_/a/_, and m'v_ D.4.1 [O_ms'Ids_ Sys_ms]:
Procem M_nt_ once; D.4.,q [_ Sylmme]: l_lisbility--
[a_-ro/_m.,mc. H.2.2 [DMa/mm _¢J: _ Dm_n--nmxm-_ and nmm_

C_m,ral Terms: RMisbility

Additional K_ Wo_la and Phrm_ Atomic _ fault-tokmmt l_mam _ mlixl_ broed-
cut

1. INTROOUCTK_

This paper pmunts • see of communication primitivu for supporti_ distributed

computations in an environment where failu,-m could occur. We am primarily

concerned with ha_nl fsilurm, wbsmby • process .tot_ es_utins without
l_rformins any incom_ sction_ Each disUibuted computation is mprm_nt_!
ss a s_ of m_nts operatin_ on a process su_ and • partial ordsr on tho_ mmn_
co_ndi_ to the thrNd of controL The typ_ of _nts considersd includs

local co_ by a pmcsm, broecku_ from • p_ to • m,t of process,

Thin mx_ am m_mml I_ _ i:)dmm Admsmd l_mm_ Pm_m Am_c_ (DoD) und_ AItPA
onk_ _ m _-01_ and by _ Nm/oul Scimm romtm_ _
DCR-841_M_.

Author' mid_m_ De_sqmm_ o(_ Scim_s, Cormdl Un/vms/t_, lthsm, NY IMM_
P*miion m a_ m*hou* fb, MI or i_ _f _hi, mmmrmik immmd _ -.., tim m_i _ _
mad* or _ far _.t commm_ sdvmst_s, th, ACM oqWt/l_ not/m smiths _ _ths

for Compuc_ M_chim_. To _ o_mmim, or to mlmblish, require, • f** mini/or qmcitk
pe_
© Ig_/ACM 0734-g071_7/0_0._047I00.78

ACMTnmI_imm oa _ _ VoL$, No. I. Febmm7 UWT,Px_s 4T-T_.

(,,,!AqA-C '-l_,]_f,o) .,,_L]_A::L r
(Corn_|l Univ.)

T ?_i

"J*..._ I Y

48 . K.P. Bitm_ alxI T. A. Jo_l_

broadcasts subject to predetermined ordering constraints, process failures, and
process recoveries.

Our premise is that event orderinp should be subeumed into the commu.

nication layer of a distributed system. In addition, sinc_ incrusing concur.
rency generally improves performance in distributed systems, we ask how much

communication-level concurrency can be achieved while still respecting event.
ordering constraints _eeified by the computations. An important feature of our

approach k that it enables a process to _ the event ordarinp that will be
observed by other processes in the system. This simplifi_ hi_r level code snd
permits distributed computations to be implemented with reduced rink of incon-

sistent actions being taken. The approach b formulated in the context of/au/t-
tolerant process groups, which consist of a mikction of proceu_ that am

coo_mting to perform a d/sttilmtod computation, and int4rmcting using our
communication protocohL In imrticul_, when the term broadcast il used below,
it mfem to the transmiuion of a mlmu_ from a pmcil to the m_imbem of a

protein fproup (and po_ibly mine additional proomm), not to all eitam or
p_ in the my,tern, as has often been the cam in p_.or work on bnmicut
protocohL

An example will illustrate the class of problems that we addrmm hem. Consider

a pmcem p that is updating i mpfieated data item maintained by a mt of dam

mmu_n. Assume that this update k l_rformod using a m//ab/e b_t: If any
data manapr n_iv_ the broadcut and mmaim operational, all data mam_m
will receive it. If p fails, a data manqer could observe any of mveral outcomu:

1. The data manqpr receives the update and than _ the failure.
2. It detects the failm and mceiwl the update later.

3. It cktects the failure, and the update is not defivered (anywhere).

In an mynehmnotn ram, a data numqer may not be able to differentiate

between the mcond and third outcomm in finite time. Moreover, if mine data

manalem _ the first outcome and othem the m¢ond one, the system
must st/ll behave correctly. Oral way to _ problems such as them is for

each procem to run an agmemant protocol to dadda on what action to take

it detects a failure [16]. This approech could be slow because it is synchronmm,
and ezpens/ve became each procel has to run inch a p_ Another pomibiUty
is to dismmi _ that m receive! by a proom alter it has legrm_ th_ _

hi failed. However, incoMist_ncim may trim if _ am dbeatdmi
by a Imam but _ by another one that imm, oftll failm lat_.

A did _mmmi_ mpmmmtative of the 8emrM approach of this psp_, is to
cmmlamet • broedcmt protocol that ordain mmmq_ relative to failure and
r,¢mm_ _mnta such that them problem, do not arm. In the q_pnmeh we ci_elop
here, the data maaage_ would form a fault-tobnmt pmem_ group. The com-
municat/on primitives emmre that every data manager experiencm the same

sequence of events; hence a data mana_r can Imrfonn an update immediately
upon receiving the commponding meuqp. Likewise, it can take a recovery action
immediately after detecting a f_lure, because no other data manager will obeerve
an inconsiatent ordering of events.

ACM Tramm_iom on Comlmu_ Sysumm, VoL 5, No. :L g,dmuu_ 1967.

OF POOR C /i'-_:'

Relial_ Communicationin me Presenceof Fa_res • 49

The remainder of this paper is structured as follows: The presumed environ-
ment is discussed in more detail in Section 2. The communication primitives are
described in Section 3, and Section 4 gives protocols to implement them in a
local network. Finally, in Section 5 we show how we applied the primitives to a
fault-tolerant system that we have implemented at CornelL

2. SYSTEM CHARACTERISTICS

The type of distrilmted system that we consider consists of a collection of

processes possessing local states and communicating by messages. Processes do
not share memory or maintain closely synchronized clocks, although they do
have access to timers with which a reasonable notion of "time-out" can be

def'med. The term [a/hoe denotes a ha/ring failure: A process ceases execution

without taking any (visible) incorrect or malicious actions [14]. No information
survives a failure (by fault tolerance we refer to continued opera,on in the
presence of failures, not recovery fzom "stable" storage). If the site at which •
failed process m executing remains operational, we a_mme that the failure is

detected (e.g., by the operat_j system) mad that amy interuted partiu are

notified. On the other hand, ff a site crashes, all the pmceases executing on it
fail, and processes at other sites can detect this only by time-oul_. The commu-

nication system can also fail: It can low and duplicate measagus, or deliver them
out of order. Our protocols may block but do not take erroneous actions if the
system psrti_nm into _ of situswithinwhich communicat3on remains
po_ible, but between which it is deSr,dod or impo,_ble.

In a broader sense, our assumption is that communication networks are

hierarchically into clum_ra of local sitam that do not experience internal

partitioning, interco_ by long-haul communication finks, which may fail
but can be rmmtablished rapidly. The protocols given in _ paper addrmm the
local case first and then show how it can be extended transparently to cover the

bAenL_Cal setting.

Clearly, failure detain by tinm-oot cannot be morn reliable than the under-
lying communication symmn_ A asrim of mmm_ lo_m can always mimic a
fa/Im. Moreover, tha order in which falluru m perceived to have occurred may

vary from proc,_ m proce_ These observations lead us to adopt a
approech to fmlum haadli_ mthar than a ph:_ one. That is, _ of •
protein acting dL-ectly after it detecte a failure, which could lead to inconsistent
actio_ • protocol is run to reach agreement with oth#r proceas_ that a failure

_km ow_n_ and to ordor it with map_ to other,NentL Thin is mumins_
be_mm _ haw the freedom to pro_nd _at events like measqo defivery took
place _ b#fom or after the fa/Im, provided that no evidence to the contntty

survived it. The basic prolmrty of a logical failure is that, after a process learns
of such an went or ob_rves the ndative ordering of such _nte, it will never
communicate with another p_ whoee state is inconsistent with this iafof
mat/on. The iastm of partit/onlng is _ by preventing commun/cation with

• cluster when a majority of its sites have failed. This ensuras that there is at
moet a sinsie set of operatiomd sites within a cluster and that this set is in an
internally consistent etate.

ACM Tnmm_o_ oa Compu_ S_Rms, VoL 5, No. I, February 19@7.

',_, PAGE IS

50 . K.p.BirmanalxIT.A.Joas_

3. FAULT-TOLERANTPROCESSGROUPS
In fault-tolerantsystems,it is frequently necessary for the members of a l_)up
of processes to be able to monitor one another. They can then take actions based
on failures, recoveries, or changes in the status of group members. As an example,
consider a fault-tolerant server that is implemented using a group of processes

as foilow_ A request for the service is broadcast to all the members of the group.

The operational process having the smallest [D responds to the request. For this
implementation to function correctly, it is necessary that all the members of the
group have the same view of which members are operational and of the IDs

assigned to each member, ffthese can chan_. Otherwise, no member may nmpond
(as may happen if all operational members believe that a failed process with a
smaller ID is still operational), or more than one member may do so (if an

operational member believes that a process with • smaller ID has failed when it
has not). Further, if thera has been • ehanp in the status (operationallfal]ed) of
a member, it is necessary for all the processes to ames on whether a request
should be handled before or alter tim chan_ in etams, so that they may

consistently decide on which proc_s should respond to the request. Althoush
these problems could be _ by running • protocol each time • failure or
recovery is suspected and/or by exstmti_ a protocol to reach consensus on the

group's state before responding to each request, it would be expensive and
complex to do so. A simpler method, described below, is to provide • process
group abstraction such that chansm in the proper*din of the Igro_ (including
failures and recoveries of group members) am ordered with respect to ongoing
b_

The notion of structuring a _ system into sets of cooperating pro-
ceeses is not new. The V system [6] and CIRCUS [6] both mack use of proem

group (or. troupo) mechanisms for this purpose. Howewr, the difficult problems
arising when one tries to employ this approach in fault-tolerant applications that

also employ highly esyl_hronous or concurrent algorithms have not been ad-

dressed in any systematic way.
It is natural to ask whether existin| broadcast primitives, such as _tom/¢

broadcast [4, 7] or _ bmsdcmt [16], can be modified to solve this p_blem.
is impractical for mveral rmson_ althoush one of our protocols is

simikr to an atomic broadcast, lVust, the ezis_ns protocol- provi_ for delivery
to d _ in • distriknod _ whenm our focus is on doli_w to ju_ mine

smes, uwral (or all) of whi could _i,k at •dnli# site. In fact, the ,e_br
_ not ewm know the set of procusm that should receive a mesule, since thk

include the memherl of a proc_s IO_up that wm SrowinS when

Immkmt w_ immd. Second, we _h to p_vide at I_ one light_ight

asynchronow communication primitive. Conventiomd mink _ proto-
cob provide • 8iohaily coneistent delivery ordonns, for which clients pay a

performance penalty. For Chang and Maxemchuk [4] this tak_ the form of
latency while forwarding the memage to • process that has permisalon to establish
broadcast orderin_ whemu in Cristian et al. [TJ it delays delivery for • period
determined from bounds on the a_uraey with which clocks m synchronized and
on the intersite meseap delivery latency. The lightweil0st ps_mcol that we

present below, CBCAST, involves minimal delivery latency and is heavily uesd

ACM T_e.e oa Computer Sys_Iks, VoL S, ,_qo. 1. Febl_mry 1987.

• ._ . , . _ _,_ _C

Rellal_ C_nmunk_bon _ the Presence of Failures • 51

in the systems discussed in Section 5. Finally, previous protocols have tended to

assume that the network consists of a small set of closely coupled sites, such as
nodes on an Ethernet. Our work can be used in a hierarchical distributed system
as welL

The remainder of this section formalizes the behavior of fault-tolerant process
groups by defining three b_ primitives: group b_adcast (GBCAST), atom/c
broodc_t (ABCAST), and causal broadcast (CBCAST). Their individual behavior

is first discummi, and then at the end of the s_ion we summarize the composite

behavior that they provido. All the bro_kaE primitives _,_ _om/c; that is,a
broadcast made to a mt of procese_ is eventually received by all operational

destinations, even in the presence of failure. We initially assume that the set of

destinations is known at the time a broadcast is issvml; latsr we ,how how to

relax thiJ by using a &_mp addreu/nl pmmcoA k,uss relating to asynchronous
use of the protocol- am deferred to the end of the section. The dim_mion mmmes
that each b_ B has a unique identifier, which we denote as ID(B). The
process that in/tiatm a broadcast B is denoted SENDER(B), while the set of
procuas_ to which B is sent is denoted DESTS(B).

3.1 Using I_e Group Broadcmt PdmilJve to IVl/m_ Proce_ Gro_ Views

A pmc_ group v/ew (or just u/_) is • snapshot of the membership and global
properti_ of a proc_l group at some (lo_cal) insUmt in time. In this section
introduce a _vup broadcast primitive, GBCAST, which can be used to inform

operational_ members when another member fa/_ recovers, join& or with-
draws voluntarily, or when some other chan4pJ to • global property of the group
occurL Our goal is to make it po_ible for each member to maintain a local copy
of the view, updating it on reception of a GBCAST mmmap, and acting on it
directly without needing any further al_ment protocohL This requires that the

receipt of a GBCAST be ordered relative to other events in the same way at each
member. Hence the sy_m "looks" as i/reception were indeed simultaneous

(provided that members do not compare the wall clock cimu at which a particular
GBCAST ml ckfivemd).

The f_oup broadcast primitive is invok_ u GBCAST(oct/on, G), where _t/on
dlmcribu the event that hal occurred (Le., "p hal failed" or "the new member
ranking is ...'). Here, G is • view, and is computed using an iterative address
rwolutkm protocol liven in Section 3.6. Additionally, when a proam p fails, the
syemm ms_e_tieal_ in/t/am a GBCAST('p has/a/kd; 0"3on ira behalf. If the

iRvobus only • _ procms, then this GBCAST can be ismmd by a
Inocom at ths ,ira wi_m the failure oc¢_m_ If a sita has cnuds_

them tlke _ handlin4 failure detection (Section 4.1) initiatm GBCASTs for

any imm_m,s at the failed elm belonging to proem groups at other sites.
GBC_ that trmmmit failure information m referred to as _ GBCASTs.

GBCAST mtisflm the following ordering conm_inta: First, the order in which

GBCASTs are _fivemd relat/ve to the delivery of all other sorts of broadcuts
(includins other GBCAST,) is the same at all overlappins clutination_ Addi-

tionally, we W that • failure GBC .A,.,.STbe d#livered after any other messages

sent by the failed process. Thus, once • proc_s is obeerved to fail, it will never

be heard from again.

ACM Tnmle_m on Computer Sylems, VoL 5, No_ I, February INT.

OF" • ;:'_ ',.:_ r._.

[

52 " K.P. Bin11_ ar_l T. A. ,Jou_l

Notice that, if process group members record each new view on stable storage
before using it, then, even if all members of a process group fail, a simple

algorithm bend on the one m [17] can be used to determine the last ones to fail,
which are generally the sites with the most up-to-date recovery information.

We know of only one system that has used a GBCAST-Iike primitive.
ADAPLEX, • databe_ system, employs a protocol called ezck_e co order

replicated updat_ in a databe_ mm with respect to failure [11], much as
GBCAST is ordered with respect co other broadcast typ_ However, no attempt
has been mack to apply thb idea in a broadar context.

3.2 TI_ Atomlc Brosdcmn PrlmltJ_

Consider • set of procassas that maintain copias of a mplicatad data structure
repruenting a queue. If item are inserted into and removed from esch copy of
the queue in the same order, no inconsistencias will m among copies. The
ABCAST primitive is provided for applications such as this, where the order in
which data am received at • dastination must be the same as the order at other

dastinations, even though this order is not datm_nmt in advance. ABCAST is
invoked as ABCAST(m_, tube/, de_), wham mq is the muas_ to be broadcast,

is a m'inz of chamctors, and deer, k the set of processes to which the

re•sup must be dalivemd. ABCASTs m atom/_. Every operational destination
receives _. or none do_ In sddition, if two ABCASTe with the same label
haw d_tinations in common, they will be dafiverud in the same order at all such

dastinationL The replicated queue dascribod above can thus be implemented by

using ABCASTe to broadcast insert or dak_ insuuctions to the various copies,
using • queue ID for the ABCAST

An intoNetin| quas_on concerns the behavior of ABCAST if • recipient fails
immediately _r daliverin8 • copy of • masmee_ Am the operational dm_cinations

required to employ the same dalivory ordarb_ as was uasd by the failed process,
or does it _ for them to just use • mutually consistent order? The protocol
that we present in Section 4 provki_ only the latter form of consistency, althou(rh
tha only failm icenario that yields • d/if•rant ordering is improbable. The
intarasu.i _ may wish to constn_ _ ecnario as an mrci_ and devise
an altomative _mpJementation that avoids this probk m (This would require an

additional plume in the protocoL)

3.3 Tho C._tma _0edcmt Pdm#f_

For some 8ppiications it is not euffk/_t that broedcma m n_eived in the same
order at ovedappin8 dastinatiom; it is also nscmmary that this order be the same

as m p_kUm/ned one. As an _k, con,/,kr • computation that first
ccgbe of • replicated variable to mm and later increments the variable.

Hem, it is not _ for the two o_,ra_n, to be carried out in tin same order

at all copi_ the incrmnent mus_ alwa_ occur Ncond. Howewr, if independent
_mpmm_as were to accase inch a repikaU_ vsriabb, some odor method would
normally be umdto wnchron/m the acc_ makins it unlikd_ that both would

updaum concurrently. In this am, • con,isUmt daliveW order is

unnecessary. The _ b_ primitive, CBCAST(_, _ dem) is used
to enforce • deriver/ordering when dasired, but with minimal synchronization.

Hem, ck,_ is • label that can Ix, compared with other ck,beb using • systam-

ACM T_ o_ _ SyeumL VeL $, N_ t, F_ I_M_.

r _ r

R_llfl_ Communicationinthe Pm_mce of FsJures • ,53

wide algorithm, to yield a partial order on CBCASTs. We write clabel, -.%clabel_,
if clabel, and clabel_ are comparable, and clabel, is less than c/abe/_. Note that we
allow for ¢/abe/s to be incomparable, that is, for neither clabel, -% clabei_ nor
clabei_ -% clabel, to hold. We use CLABEL(B) to represent the clabel of broadcast
B, and for brevity write B -% B' to mean CLABEL(B) -% CLABEL(B'). An

application uses c/abe/s to indicate the order in which broadcasts should be
delivered.

What constraints do c/abe/s place on the order of broadcast deliveries? Some

orderinp specified by ¢bsbeLiIare trivi_Uy sa_ For example, if two CBCASTs
have no destinations in common, them is no real constraint on the order of

message delivery, regardless of how their labels may compare. On the other hand,
some specifiable orderings are unenforceable. A CBCAST with a ¢iabel of less
than one that has aLee•dy been delivered clearly cannot be delivered in the desired

order. This calls for a restriction on allowable c/abe/L Fortunately, most appli-
cations require an order to be enforced between two broadcasts only if the
outcome of one could cammlly affect the other. The notion of pocmt_
in an asynchronous distribu_d mm in which information is exchanged only

by tramunitting ummmg_ is _ by 12unport [13]. In such a ram, a
broadcast B is said to be potent/a//y ¢au_g/y related to a broadcast B' only if they
were unt by the same procase and B' occurred ai_r B, or if B had been delivered
at SENDER(B') before B' was unt (or then, is a chain of such mceivere

and senders linking B to B'). We rustrict labels on CBCASTS to disallow
CLABEL(B') from being leas than that of CLABEL(B) if th_ have tha ,•me
sander and B' is sent after B, or if B had been delivered at SENDER(B') before

B' was sent. LSuch orderinp cannot be enforced units the ,y, tun has knowled_
of which future broadcas_ a broa&ast must wait for, and becau_ such infor-

marion is usually not available anyway, this is not a major tin,fiction.

It would be po_ible to design • broadcast primitive that orders any two
broadcast• that are potentially catumlly related. This is stronger than necesaary,
however. Consider • broadcast B made by • proce_ p to update copies of a

replicated variable x. Let this be followed by a broadcast B' by p to update copies
of y. Even thoullh them is a potential causal mlat/on between B and B' (because
B' occurred after B), tham may be no real causal relation between them. In this
ca,e there would be no rmmon to order the delivery of B before that of B', and to

order such b_ _y is inoffL-iant becamm it limits the pomdble
concurrency in the sysunn. Tho CI]CAST primitive tu_ ¢_bde to identify which

of the pmantial caumd mlationabipe am _nifiamt. Emmntlally, it orders broad-
cam ndm/ve to qmch other if they am potentially causal and if the c/abe/# indicate

that the potm*_d cauul mlationshipo am significant.
We _ fbraudly _ the ordering properties of CBCASTs. Given -% as

abovo, i _ relation pr_fda lu_w_n CBCAST, be tha mmsitive clomw, of

the following two mlatiomE

A. B pveeed_ B' ifB -% B' and the same proeasep sends B beforeitaande B'.
B. B p_ B' if B -%B' and B is delivered at SENDER(B') before B' is sent.

' Mornaccurately,if • broedca_/s iabek_l in this way. tim CBCAST primitivedo_ no_i_ummum
that this orderwillbe ob_rved.

ACM Trmmm_.iom on Compu_r Symu.m_ VoL 5, No. l, FM_mm_ 19@7.

54 • K.P. B_ml_ ar¢l T. A. Josq_

Then CBCASTs have the following properties: They are atomic, and if B precedes
B', then B is delivered before B' at any overlapping destination.

The CBCAST primitive may mm to be too weak because it cannot enforce

orderings that may be desired between broadcas'.8 that are not potentially causal.
Consider a process p that instructs a set of devices, "place wine bottles under
taps," and a process q that orders, "open tape." Clearly, it is desirable that the
first broadcast be delivered everywhere before the second. However, in an
asynchronous system in which then is no upper bound on message delivery

times, the only way th_ can be implemented is to require that the devices send
q a message when the wine bottles have indeed been placed under the tap. These
messages eansally relate the _ bum p to that bum q, and CBCASTs can
then be used to enforce the desired orderin_ In pmersL there will be little or no
occasion to order asynchronous broadcu_ that are not potentially causal. Thus

the CBCAST is strong enough for moat applications.
The ability to specify • c/abel permits the CBCAST user to exploit the

maximum cl_gree of concurrency and asynchrony pcesibl• without compromising
tha correctnees of • computation. Note that the accuracy with which c/abfb
reprennt the dependency between broadcasts could limit concurrency:. If B
preced_ B', CBCAST will deliver B first even ff the semantics of B and B' are
such that they are actually independent. On the other hand, if it is impractical
to deduce or to repmmnt causal relationships concimly, time stamps genemt, m:i

using a _ c/ock [13] can be substituted for the c/abe/and the arithmetic
comparison operator used for-q,. The result is • comm_ve version of CBCAST
that rupecte potential catumliW. Some of our work uses this weakened version
of CBCAST despite the loss of concurrency that it enUfi_.

3.4 _Mltlona _ Pflmlh_m

The primitives _ above m mintively orthogonai in that they address
different aspects of the orderi_ problem, sltbmqgh there is a aanm in which
ABCAST is ,tron(pr than CBCAST becau_ it constrains the defivery order for

all even_ not just mum. Other primitiv_ that might mmmim_ be useful include
cau_ _m/¢ bnmdee_ which providm • siebsl ordering and also r_3ecte

cansalit_, and _ _ which pmvidm i_arantesd defivery, but without
any orderin8 consmdnts. A causal atomic protocol could be con-

struct_ usin8 the ABCAST protocol we live in Soction 3, with CBCAST as an
underlying primitivo; hence we omit any further dioeuNion of this protocol.
Minimal immdcmt mmdte whms CBCASTa am invok,d with c/abeb that violate

amm .

 mcrlmous and As zr. .om o¢
Mmsy,ystmms employ mmoW procatum calls (RP_) intm_dly, as • lowest Level

ps_unitive for interaction betw_n p_ It should be evident that all of our
broadcast primitivm can be used to implement replicated remote procedure calls,
es in [6]: The caller would simply paum until mplim were received bum all the
participate (oLmrvation of a failure constitutes a reply in this cam). a We term

sPmeRs Ixoupmemhem ob_rv_ the failm of other 8zeep memhemwhentheyrueuivu• failure
GBCAST. In other situations • procemurns • _ fscility dsscribm/in Section 4.1 to dstect
failures of other p_

ACM T_ tm_ S_mm_ VoL'&No.I. F_mms_INT.

Relial_eCommunicationinthe _ of Failur_ • 55

such a use of the primitives synchronous to distinguish it from an asynchronous
broadcast in which no replies, or just one reply, suffice.

In the work we report later, GBCAST and ABCAST are normally invoked
synchronously to implement's remote procedure ca]/by one member on all the
members of its process group. However, CBCAST, which is the most frequently
used overall is almost never invoked synchronously. ,autynchronous CBCASTs

are the source of most concurrency in the ISIS system [2]: Although the delivery
ordering is auured, transmission can be delayed to enable a message to be
pilEgybecked on another, or to schedule IO within the system as a whole. Although
the system cannot defer an asynchronous brc4dcast indefinitely, the ability to
defer it a little, without delaying some computation by doing so, permits load to
be smoothed. Since CBCAST respects the delivery orderinp on which a CON-

putation might depend and is ordered with respect to failures, the concurrency
introduced does not complicate higher level alg_rithm*. Moreover, the protocol
itself is extremely cheap.

A problem is introduced by our deckion to allow asynchronous brosdcasts:

The atomic reception property must now be extended to address causally related
sequences of asynchronous messages. Ira failure were to nmdt in some broadcasts

being delivered to all their d_tination_ but in others that preosde them not being
delivered anywhere, incommr',eney might result even if the _tion_ do not

overlap. We therefore extend the atomkn'ty pn_l_rty _ follom_ If prot_ s
receives a message m and subsequently sends a mmas_ m' to pmosm t before
failing, then, untem t fails as well, m must be delivered to its remaining (opera-
tional) destinations. This is becaum the state of t may indirectly depend on m.
The costs of the protocols are not affected by this change.

A second problem arises when tlm pragmatic implications of asynchrony are
considered. In the event of a failure, a suffix of a sequanos of asynchronous
broedcam_, could be lost, and the system mints would still be intsrnally consistent
according to the above rule. Hence, a process that is about to take soma action

that may leave an extsmally vialbla _ effect will need a way to patum until it
is guaranteed that asynchronous broadcu_ that precede it have actually been
dellvered. For exampb, consider a process that _ynchronoualy b_ a
checkpoint to a set of backup procasast If it fails whib the broadcast is still in

pro_ at other sitas, it nfiCht not be delivered to any backup (me definition of
aeon), and tho rom_ action would not occur. One way to eddnms this is
for a tundra, to semi a smma_ rKpmeting scknowledgments from the destinations

and to u_g until the dmtinations m obeerved to fail or abe Eknowledgments

m me_md. Rather than k-re to do this etch time, a flutlt prinfitive is provided,
which bJmlm its caller until all its pending asynchronous b_ hawe been
delivered to their (operational) _tions. Occamonnl calls to flush do not

eliminam the benefit of using CBCAST mp/nchronously. Unism the system hss

built up a conalderabht backlog of undeHvemd broadcast masugm, which should
be rare, flush will only paum while transmission of the last few broadcasts
completes.

All our protocok require that a sender explicitly name the set of destination
processes for each broadcast. A problem arises if a sender wishes to broadcast to

ACM Tnuumcttono on ComputRr Sysutms. VoL 5. No. I. February t957.

• K.P.Bin_ and T.A.,Jos$1_

a_ the members 6(a process g_oup. If the group grows after the broadcast is
initiated but before it is delivered, new members would not receive it. A way to
resolve this is for each process group member to number its process group views

sequentially. Any process can then cache (possibly out-of.date) process group
membership information and view numbers for g_oupe with which it communi-

cates. To transmit a GBCAST, ABCAST, or CBCAST to all members of a group
0, the cached informat/on would be used to compute DESTS(B), and the view
number included in the message. On delivery, if a recipient finds that the process
group view h_ changed, it rejects the mem_le. Since all recipients have the same
view when they receive the massap, they all reject it if any do so. A rejected
broadcut can then be retransmltted to an updated set of destinations, and the
cache up,ted. A simil_rtechniquew_ proposed [6] for communication with

process troupe, that have been dynamically mco_
The reader may be troubled by the fact that this alsorithm does not distinlpdsh

between a situation in which a process receives a broadcast and then fails and
one in which the process fails first and the broadcast is never delivered to it. In
fact, both cases am tzeated as if atomic delivery had occurred in the view that

existed prior to the failure, because the resulting system states am indiatinlpdsh-
able. (Recall that a failure results in tim lore of all information at • sit,.) This is

consistent with our view of atomic delivery as • lolpcal property rather than a
physical one. This approach is very similar to the one discussed in Section 2 in
connection with sit, failunm.

When updating the cache, some cam is needed to enmu_ that the CBCAST

delivery order is preserved. In perticui_, consider three CBCASTm A -_ B -_ C,
and umxme that A and B have been tnumm/tted um/ng incorrect destinations. If
the cache is updated promptly att,r A is n0,ct,¢ C could be mmmn/tted umin¢
the co_ dmcinations before B is n0ect_ and rstmns_tt,¢ C ndsht then
be deliveNd before th, n_mmm_ion of B occum, which would violate the causal

order. This problem is avoided by invoking flush before clumj/ng the contents
of • cache.

For technical rmmons that w, discum eimmbem [31, an it_ramt delivery is
undasimbk when hi, rarchicM procem I_up relationship, am supported, as is

the cram in • _ that we are currently _ Conm_Uy, our impbmen-
ration of GBCAST is such timt the _idmminG protocol never iterates in the
common dtuation in which • member of • proems _ b_ to the other
_mbem of the _ (as opp_ to • bro,de_ orilinatins o_ida th, Stoup).

This is _ wl lock the view wb,n tb, Stoup membership is _owins, as
de_rib_ in S_on 4_.&

Gro stm SUm
A mmmoa pn_0_mu fltced by tl_ prolpqmun_ _ _ult-tobraut proeem
is to man/pulate the "cutout state" of • IProup, for enmple, when • checkpoint
must, be mad, or wban im'ti-Mizi_ • pmelm that _ to join or recover.
Checkpointinz is nraizhtforward: Any proam can imu, • GBCAST to the

membership of the _ (includinlJ itself), and wben _ GBCAST is reeeived,
it is safe to make the checkpoint imn_tely. Tbe nmultin4j cbeckpointe will be

ACM Tra_mctiow oa COmlmmW S_mum_ VoL 5, N_ l, Febe_4ry 19_,

OF POO_ _UALITY

Client 1

AICAST

Relial_ Communicationinthe Preunce of Failur_ • 57

Client 2 View GIICAST action

A__ A creates the grouD

8]oens

- CSCAST2 __"_

AICAST

Cjo,ns

Crash A falls

9 •

Fql. 1. Cl_nta communkatin8 with mprecew iproup.

consistent becsuse they am comput_ at the mum instant in (1o8i¢=1) time,
relative to other events.

There m two w•ys to trsnsfer the state to • rucoverin8procm_ The most

stra/ghtforwardsolution is to view the recovery GBCAST as • synchronous RPC
that futures • |taro vector (with a staW con_on fzom each current member

of the group) and has the side effect of changing the view to include the new
member. The state transfer b fault tolerant because it is so redundant: Unless

all current members fail, at lust one member will ret3ml tho present stats.
However, if suttee can be isrp, aa in • database, _ spproach i= imprecticaL

A more sopbisticatsd mechanism u=eswhat we call • coordin_v/mhort scheme
and i= motivated by our prior work on m/Ibm object= in ISIS [2]. At the t/me
the recovery GBCA_F is r_eivecL one proce_ I_)up member is dNi_a_d the
coord/naWr for the m trsnsfer, and the others beck it up as it= cohorUL The

comdinstor uses any convenient protocol (perhaps • stream of CBCASTs) to
umdm its BUtte to the recoverint proce_ and when the transfer ia finished, it

ueesC'_CAST to send • completion msmap to the other group members. While
the m tmns_ is under way, the new I_msp member may receive other sorts

of _ simat the view will already have dmat_ to include it. k haters
tbew to be processed after the transfer terminatst If the coordinator fails before

completing the transfer, the cohorts will receive • failure GBCAST, and one then
takes over to restart or rsmmse the transfer.

3.8 F.xam_

FilFuSm1 illustrates the communicatio_ patterns chat mil_t arise when two clients
communicate with a proce_ f_up. The filF_m is drawn to make communication

ACM T_ns oa Compm_ Systems, VoL 5, N_ l, Fdlmam/IMT.

58 . K.P. Bkm_ anclT. A. Joes_

look synchronous, since recipients will generally be programmed as if this were

the case. Paths taken by reply messages are not shown because the group
mechanism is compatible with a .variety of interaction mechanisms. These include
"informatory" interactions in which no reply is needed, coordinator-cohort
interactions where a single reply is sent on behalf of the group as a whole

[2], and process troupe implementations in which all members reply to each
me_,e Is].

4. IMPLEMENTATION OF THE COMMUNICATION ABSTRACTION

This section gives implementation= for the communication abstraction described
previously, uu'seted to a collection of computers interconnected by a local
network. We first cover the case of a cluster of sites within which communication

is assumed to be rapid and partitioning unlikely. We begin by diectming the

transformation of the =raw" environment of a typical cluster into one giving very
uniform failure and communication behavior at all sites. Next, the ABCAST.
CBCAST, and GBCAST protocols are given, and a prhege collection mechanism
is described. Finally, the section ends by addreesing cluster interconnection
issues. Figure 2 illustrates the overall system structure.

4.1 Ttm_ Layf

The intertite communication layer converts halting failures and admissible
communication failures (mesulp, 1o_, delayed delivery, end out-of-order deliv-

ery) into • s_ v&,w abr, mction, dsfmed below. The ¼yet provic_ two prinfitives:
send(m, drear) for mndint memm4Jem to site dear, and sr_las(m), which returns

sent if the destination has eclmowledpd receipt of the messa_ or if • failure

protocol has been started for the destination site, as dsecribed below. Intuitively,
• memap has been senz if tim fumm behavior of the symmm will be consistent
with tim mmm_ hevinz _mm'y be, n dslivemd.

Processes ezecutin8 the protocols also use • second interface to the intemite

layer, which provides • p_x-ess mo_ semite. A process invokes this service
when it is waitin8 for a reply from another pro_es. The mrvice watches for
chenpe in sits view_ which can silPfifY the fa_um of one or morn monitored

p_ and also intermtpttes • proc,m manaprr on the sire where • p_ is

runninlf if • reasonable dshy elapase with no reply from the monitored procmL
If a fa/lure is detected, the monitor m pnerat_ • _ _ mesulp on
behalf of the failed proc_o and esnds it to t_, proems that _ the

umaitmins mrvim. The monitor ram,ira is inmlrated into our mmmp dsfivery
m]IMM_ in • way thin enmmm that any MIY mat by tim faikd procees will be
ddJNmd before filum moesq_ are pnemted for it. 'I'hzougimut the mnmimbr

of tlb asetiom, when we say that • proam dstecW • failm of another p_
md e0m_otm • pn_ocoi, we refer to _ monitoriag meclumkm.

Ths intms/t_ layer mmploye • windowed acknow_nt protocol for ordmd,

lo_em, eite-to-site masm_ trmmmiesion. Depending on the prolxtrthm of the
intersite mmsport layer, the complazity of this layer will very. In our current

implementation it consists of a Rlt_rinl mechenmm that is emmntially bound to
the network device drivers at e, ch site. To detect failure, qmeh site ,ends •

"hello" mesm_ to all other sites periodically;, if • hello uamasje Lenot re_ived

ACM Tnmmctmm ea Commm_ Sym_mL VoL 5, No. t, FMM_U7 INT.

0[: POOR _U_._L_"_"_

Re(la_e Communication in the _ of Failures • 59

Fault-tolerant

programm*ng tools Presentation Layer

Bulletinboards Fault tolerant services

Facilities for

¢ommunfcatmg w_rh
Drocess grouDs

Kemel boundorv

Broadcast Drotocols

Mestafle

queues

r 5ite.v, ew managementIn0ut and output filter1 I

I Underlying message Tranmort I

JrO4C/¢_t data strucTureS

In ter1J tq commun_¢a tion

Arcbitmnu_ o(tbe communkation

from = site within a rmmnabl, period, it is umsmed to have failed, triggering a

protocol to chanlff the site view. If a site is slow to send muMges, it may be

considered to have f_led and forced to run • recovery protocol (the probability

of error can be msds small by pickinl • _ time-out interval or/nCroducinl a
protocol phase that allows other s/tN to prevent execut/on of the failure al_rithm

if they believe that the site in quest/on is actually operational). A site _scarnafion

number is incremented each time • site recovers; henceforth, the term "site"

always memm "incamadon of • site." Moual_, from • _ incarnation an,
d_cani_ by tlw input filter, sad a _o(_ _ dmd mmm_ i= roturned to the
sender. Memqes sddrmmd to an incarnation different fzom the current one are

dbc=d.

mm m ement

Tits Jits view _nt layer enmu_ that each =its in the mm hut
comiaNat picture of s/to failunm and recoveriss occurring in the Wstem. Each
site has a s_ vim_, which is the set of s/tin it deems to be ogerationai, with their

respective incsrnation numbem A s/ta view i= chanpd when • s/re fa/b, or
mcovem A site v_ mq_nm, denoted Vo, V:, ... i= • sequence of s/re views,
reflecting these c_ The s/te view manapment protocol described in this

section ensur_ that each operations/m/re Irou throuzh the same sequence of site
viowt Later, the protocol= take advanraze of themto recover from failures without
rurst running any special alp_ement protocol=.

ACM Tmsss on Computer Symms. VoL $. No. I, FetmatW 19e7.

60 " K.P.Birmanand T.A.Joesph

Each site maintains a copy of the site view sequence, initialized in some
consistent way when the system cold-star_. The sites in a view can be ordered

uniquely according to the view in which they first became operational, with ties
broken by site ID. The "oldest" site in this ordering is called the view manager
and is responsible for initiating the view management protocol when it detec_ a
site failure or recovery. If a site de.trainee that all sites older than itself have
failed, it takes over u the new view manager. Note that the sequence of view

managers is a stable property:. Extensions to the view sequence extend the

sequence of managers without changing the subeequence on which sites have

The view management protocol is besed on a two-pha_ commit protocol. Let

Vo, V, V, be the current site view sequence.

(1) On detecting failur_ or recoveries, the view manager computes a proposed
view eztens/on Vt÷t, Vi÷_, V,÷_. (If no failures occur during the execution

of the protocol, the length of the extension is 1; that is, V_L contains all the
changes to the current site view. Failures occurring during the execution of
the protocol may ¢awm the site view sequence to be extended by more than
one view, ss described shortly.) It ceases to accept msesag_ from site
incarnations not in Vi÷j and sends the propoesd view extension to tim mites

in VI.,.
(2) On receiving a propm_ view extension, a mite first ceases to accept

from site incarnations not in V_.

(a) If the site has not previously received a propoe_ extension, or the new
one includes all the chang_ (failu_ and mcoveriN) recorded in the old

one, tim site saves the new propoeed extension. Then, it replies to the

view nmm4pr with a pro/t/re _/mow_
(b) Otherwise, tim site has previously receiv_ a pmpoe_ view extension

recording events that are not in¢lud_ in the new one. It replies with a

_/mowk_gm_nt, giving the events that _m mimng.

(3) The _ mam_r collects acknowiKlgmente.

(a) If all the acknowledgmente were poeitive, it mnde a ¢omm/t mes_'e for

the pmpo_l extension to all sit_ in V,_.
(b) If utditionel failur_ or mcoveri_ haw been _ or negative ac-

knowledgmente were _ived, the _ _r updates it8 propo_i
exWneion and reeffiecutam from step I. If the view manager fails, a new
sito takes over 8s view manager and p_ _ follows.

(4) If this new view manager ham an uncommitted view eztension, the previous
_ may have sent some commit muslim before failing. It appends

a new mite view containing the failure of the old view maneaer to ite pending

utmwkm and starw tim protocol fi_m steP 1.

(5) If the new view manapr has received • comm/ttml extension and ham no

pending one, it must mmume that soma sites did not receive the commit. It
appends a new view to the moat recently committed extension and continues
from step I. Participants ignore a committed prefix of a propoemi extension.

ACM T_ on Computer Systems, VoL 5, No. 1, _'_ tg_/.

OF F{,)OR _LIALiTY

Relisi_ CommunCat_ in _ _ of FaJur_ • 61

To establish the correctness of the protocol, consider the cases that can arise:

(1) If the view manager does not fail, all sites obtain the same committed view
extensions.

(2) If the view manager fails and any site has a committed view extension, then

all sites have acknowledged that extension. The new view manager will
eventually commit the extension everywhere.

(3) If the view manager fails after it has distributed a proposed extension to a
subset of sites and that proposed extension is not known to the new view
manager, then any site knowing the extension will send a negative acknowl-
ed_nent to the new coordinator when the protocol ia restarted, and the

coordhmtor will then distribute it during an additional protocol phase.

The following issues m because sites may detect failures and recoveries of
other sites at different times and in arbitrary order. First, the order in which
view mana_m commit site views becomes the order accepted by the system, even
if individual sites may have detected failures and recoveries in • different order.

Second, a view manager may erronemlsly decido that a site has failed (because it

is slow to respond). In this cam all sites consider the site in question to have
failed _ and ruepond to any message from it with • _ are dead" message. Such

a site is said to be k///ed, as it is forced to undergo recovery with • new incarnation
number. Third, it is po_ible for • site a to believe that a site b has failed, for b
to believe that • has failed, and for each of them to consider themselves as the

view manager. In this situation, one or both will be killed; otherwise, some site

would have to acknowlsd_ two contradictory views from two different view
mam_n_ wh/eh cannot happen_

Below, we uN the site _ in the GBCAST p_am_ol (Section 4.3.3) and during
collection of the associative store (Saction 4.4). Although fa/lures that

chan_ the site view can be tokrated, the site view should not grow to include
recovered situs while _ protocols are running. This problem can be solved by
introducing locks on the site view data s_. Prior to initiating the view
management protocol for • recovery (but not for failures), a write-lock must be

acquimL Similarly, the GBCAST and larha_ collection protocols must acquire
read-lockL

No_ that, if it is des/r_ that the system be able to recover if all sites fail, a
simplifi_ proC_e_ broad on the o_ in [17] can ha run to ,_on,tn_ the view

sequm,ce from copra saved on aonvolatile stomse.

4_ The PmeocoW

TI_ mcttoa s/vm implmnentatioa, for ABCAST, CBCAST, sad GBCAST,

ddm/q smbep collection issues to Section 4.4. The broadcast protocols order
addmmed to • process as nm:esury and piece them on the decry

queue for the proce_ as illustrated in F'_m, 3. A process removes meesages

aThis is tnu unk_ tho ne_md_ becomm _; that is, • _ ofsi_ n.mams op,rationaL
but become unaide to ¢ommunica_ with the other ,it_ If n_work partiT_oninl can oeeuz, ,rmMam
aetionacanbe pm,_mtmt by _ that sitss esme to olpemte if the number of operational sit_ in
•viewdru_ belowa quorum.

ACM T_ oaCompuuwSyou_m_VoL5,N_ I.leebemu_19@7.

62 - K.P. Birmanand T. A. Jose_

ABCAST amves

CICAST amves

/_[ASCAST queue L

[A|_ST queue.i//

/._..................@
Fig. 3. Data sun_nu_ used by ABCA_T and CBCAST primitives.

from its delivery queue in first.in, _,st-out (FIFO) order. The other queues are
used to buffer messages before they are placed on the delivery queue.

4.3.1 ABCAST Protocol Our ABCAST prowcol is baaed on 8 two-phase

protocol by D. Skeen (unpublished communication, Feb. 1988). The protocol
maintains a set of priority queues for each process, one for each ABCAST label,
in which it buffers memqn before placing them on the delivery queue. We

8ssume that priority values are integers, with • process ID appended ss a sufKz
to disambiluate the priorities suited by different processes. Each message in
the buffers is tqSed deliverable or wldeLive_. The protocol to implement

ABCAST(mJl,/abe/, _t,) is as follows:..

(I) The sender transmits m_r to its destination_
(2) Each r_ient adds the meuqe to the priority queue usociatod with/abe/,

tstsing it as u_re_uerab_. It assigns this meessSe a priority isrpr than the
priority of any message that was placed in the qmmo, with the process ID of
the recipient as • sufKL It then informs the sender of the priority that it

_aed to the mo..aSe.
(3) The sender coilocts responses from recipients that remain operational. It

then computes the ,""-;",," value of all the priorities it received, and sends
this value back to the recipients.

(4) The recipionts change the priority of the mNsqs to the value they receive
from the sender, tag the mewqp ss detivemb_, and re-sort their priority

queuee. They then uransfer meesaSes from the priority queue to the delivery

queue in order of increm_n8 priority, until the priority queue becomes empty
or the meeeqe with the lowest priority is undeliverable. In the Latter case no
more memmp8 are tcansferred until the memap at the hoed of the queue
becomes deliverable.

If • _ occurs, any 8ito that has a mesup tsKpd _/_er_ from a
fiBod sender dmcts _ usin8 the monitorins mochan/sm aad caa then take
oe0r as the new coordinator to complew the protocol It does so by mtsrroptint

pertickxmts about the ¢atos of the momap. A p_ticip_at bein8 interroptsd
either has never received the mem_ or responds with the priority and tag. The
new coordimttor collects ruponN¢ If any process has marked the memalp
de/wera_, the new coord/nator disur/butso the commponding priority to the

other processes (sUp 3). Otherwise, it resumes from sup 1. Noto that this scheme

ACM T_ on Computer Sylems, Vor 5. No. t. Febeuw t9@7.

requires that each process retain information about messages even after they are
placed on the delivery queue; garbage collection is discussed in Section 4.4.

CORRECTNESS. The protocol is atomic because, before any recipient tags a
message as de//verab/e, aJl destinations must have received copies of it. If a failure
occurs after that, a destination that has a copy tagged undeliverable will complete

the protocol. Thus, if the message is delivered at any destination, it will be
delivered at all of them.

We now show that every message is delivered in the same order at all
overlapping destinations. If the final priorities of any two messages were assigned
by the same process, they cannot be equal. If they were assigned by different

processes, the process ID that is suffixed can be used to order them should the
priority values be equal. Thus every deliverable message has a un/que priority
assigned to it. Messages addressed to overlapping destinations are delivered
everywhere in this order. Because the final priority is the maximum of all assigned

priorities, the priority of an unde//verab/e message never becomes smaller than
that of a message that has already been delivered. Thus, if the message at the
head of the queue is tagged as de//verab/e, it can always be safely delivered. O

4.3.2 CBCAST Protocol. Our CBCAST protocol operates by emmring that,
whenever a message B is sent from a process p to a process q, a copy of every

undelivered message B' that precedes B (as in Section 3.3) is aim sent to q with
B, even if q is not a destination for B'. Thus a message may travel from process

to process before it reaches a destination, and multiple copies could be delivered
by different mutes (duplicates are discarded). It follows that, if a message B is
delivered to a process q, then copies of all messages addressed to q that precede
B also arrive with B or have arrived earlier. Messages addressed to q can there-

fore be delivered in order. We first describe a simple but inefficient CBCAST

implementation, then show how its efficiency may be improved.
For each proceu p, there is a messqp buffer BUFp, which contains copies of

m_ sent to and from p, as well as copies of mmmpm that arrive at p
en route to other processes. Every message B in BUFp has fields ID(B) and
REM_DESTS(B) mmociatad with it. When p performs t CBCAST(m_, c_bel,

dears), the mesup is placed in BUTp, and REM_DESTS(B) is im_ to
dears. If p E REM_DESTS(B), a copy of the message is placed on the delivery

queue for p, and p is removod f_om REM.._ESTS(B). The process p can then
continue as if the message had already bean sent. Messages in BUTp are later

scheduled for transmission to BUTq for each destination q. The decision as to
when this occurs can be based on advice from higher level algorithms (a message

that requires a responm would prmmnably be transmitted as soon as pmmible to
minimize waiting time, while msynchronmn masas4ps for which no replies are
needed could be delayed loner) or on factors like the load on the network. We

asmsme only that dl mmmq_ aru scheduled for transmission within finite time.
For now, ws sbo resume that a copy of any measap, placed in BUFp remains in

the Imt_ _.
A memsp B b mmsmitt_ from BUTp 8t site s to BUT. at site t as follows:

(1) A tmmgqr pacbet (B s, Bs, ...) is first created and includes all messages B'

in BUFp such that B' --%B and REM_DESTS(B') is nonempty. The mesuges
aresortedso that,ifBi-_ B_,then i< j.

ACM T_ oatComputer Systems, VoL 5,No. I,F_0mm_ I987.

64 . K.p. Birman arid T. A. Jos_

(2) The transfer packet is then transmitted from site s to site t.
(3) When the packet has been sent, for each B. that it contained, q is deleted

from REM_DESTS(B,), if it was listed there.

When process q receives a packet (B_, B2), the following is done for each

i, in increasing order of i:

(4) If ID(BJ is already associated with a message in BUFq, then B. is a duplicate
and is discarded.

(5) Ifq E REM_DESTS(B_), B_ is placed on the delivery queue for q, q is removed
from REM_DESTS(Bi), and a copy of Bi is placed in BUFq.

(6) Otherwise, B, is a message in transit to another process, and it is simply

placed in BUFq.

CORIUgCrNF_8. Any process q that receives a message adds a copy of it to

BUFq. Since all messages in BUFq are scheduled for transmission within finite

time, it follows that, if any site has received a message and does not fail, the

message will eventually be delivered to all the destinations that remain opera-
tional. Thus the pro_'ol is atomic.

To show that messages are delivered in the correct order, it suffices to show

that. for every pair of messages B and B' delivered to q, if B pveced_ B', then B

is placed on the delivery queue before B'. We first prove that a copy of B will
have been placed in BUFs_sma._ when B' wu first placed them. Then any

transfer packet that conta/ns B' will alJo contain B, and B will be ordered before
B' in it. Thus. when the first transfer packet containing B' arrives at q, a copy
of B will also be received. If B has not arrived in an earlier packet (in which case
it has already been placed on the delivery queue). B will now be placed on the

delivery queue before B'.
It follows from the definition of the relation peeced_ that, if B precedes B',

there is a sequence of CBCASTS B = Bo, B_, ..., B. = B' such that, for all i,
0 < i _ n, B_-i -% B. SENDER(BJ (E REM_DESTS(Bi-_), and B_-t is received
at SENDER(BJ before B, is sent. The proof that a copy of B will have been

placed in BUFsm_SlmV_ when B' is first placed there is by induction on n, the
length of the shortest sequence satidyi_ the properties above. If a - 0, B = B',
and the result follows immediately. Aesume that the hypothesis is valid for
n = k. If n = k + I, consider the mesuSes B and B,. By the induction hypothesis,

• copy of B will have been placed in BUF_ when B. was frog placed
them. Hence any transfer packet carrying • copy of B, will also carry a copy of

B. We know that B, -% B_.,, SENDER(B_.t) _ REM_DESTS(B,), and B, is
received st SENDER(B_.t) before B_.L is sent. Hence a copy of B will -¥rive at
SENDER(B,.t) and be placed in BUFsffi_s,.,_ before B,., is delivered.

_ ue dw _ _t. 0

There are • number of ways in which the protocol above can be optimized:

(1) Although the protocol was stated in terms of packets sent from process to
process, these packets could be combined to form lazpr intersite packets. One
intersite packet could suff'_.'e to transfer meess4ps from • set of protesess at one
site to all destination processes at another. The packet reception rules would be

ACMT_ on ComlmterSy,_,_ VoL5.No. I. Februarytgfft.

Rellal_e Communication in the Pre_mos of Failures • 65

3_
._md
ties

_er
ts a

_ave
iew
the

rave

Let

,sed
:ion
the

of

ban
site

Lg_

lew

old
t}

;ion
ha

for

ac.
,sed

lew

ol/8

nde
Jng

rio

• It

ues

on.

0_" _'_'-:_" *:

AICAST arrives _ AII_J_STqueue H Wait | Delivery
l queue I-'jI queu.

GSCASTamves

ClCASTamves_" PIUPo _

F'_ 4. Data sr2uctur_ u_d during GBCAST pnm3coL

amended to deliver all the messages in a packet that have local destinations at
once and to update the associated PBUFs correctly.

(2) Instead of keeping a copy of a message in the buffer of each process at a
site, the buffers could contain pointers into a common message pool for all

processes at the same site. Then uch message would be rupresentad at most once
at each site.

(3) To avoid sending a copy of the same nu_mqp from process p to process q
more than once, a field SENT_TO(B) can be aseociated with each me_age B

and updated each time a packet containing the m_aage is sent. The packet

generation rules can then be further amended to include B in a packet to a site
only if it has not already been sent there. If desired, it would also be possible to
transmit SENT_TO information from site to site periodically so that other sites

canavoidsendingduplicater

The problem of deleting a message 8i_er it has reached all its destinations
(REM-DESTS becomee empty) is discussed in Section 4.4.

4.3.3 GBCAST _ A GBCAST(oct/on, G) must be orderad relative to
other GBCASTs to G, u well is relative to ABCASTs and CBCASTs. In addition

failure GBCASTs must be delivered after every message from the fai]ed process.

Thin Mpects are treated u sepm'ate problems in the description of the protocol,
then optimimtions yielding • more efficient implementation are given. Figure 4
shows the miditiomd data stnsctores nm_ad to support the GBCAST protocol.

The first part is earriad out only for failure GBCASTs and ensures thatall

m_squ from a failedprocu_ are orderedbeforethe GBCAST. Say thatthe

im_,m that falkd is 1.

(L1) Tim proeses p running the protocol acqu/res • ruad-lock on its copy of the
site vbw. It then sends • mesesge to a//procesa_ in the system, informing

them of the start of the failure GBCAST for [.

(1.2) A procsel q receiving this memmge schedules for transmi_ion any message
B in BUr, sent by [that includes a member of G in REM..DESTS(B). It
then waits until the status of these meuq_ turns to sent.

ACMT_ oa _ Sy'mmma,VoL5. No. |. Fd_s'ua_1987.

-..q

66 - K.P. Birmanand T. A. Jose_

(1.3) Ifq belongs to G, q waits until all ABCASTs from/have become deliverable.
This will happen eventually because some process (perhaps q itself) will
take over to complete the ABCAST protocol.

(1.4) The process q then sends an acknowledgment to p. When acknowledgments
have been received from all operational processes, p releases its read-lock.

The lock is implicitly released if p fails prior to doing so.

The second part of the protocol is based on the ABCAST protocol, and orders
GBCASTs to the same group relative to one another, GBCASTs relative to
ABCASTs.

(2.1) The process p distributes the message act/on to the members of the process
group G.

(2.2) A recipient q places copies of the message on a//ABCAST priority queues,

tagging them unde//uermb/e. We assume that there is always a (possibly
empty) queue for every possible ABCAST label It assigns it a priority
greater than that of any message that has been placed on any of the
ABCAST queue, and sends this priority value back to p (all copies receive

the same priority).
(2.3) After collacting the reqz_mm_ p sends the maximum of all the values it has

received to the membere of (7, which change the priority accordingly and

re-sort their queues. Unlike what happens in the ABCAST protocol, the
messages are not tailed dd/uerdde at this time. Thus, when a GBCAST

mes_ge reaches the head of an ABCAST priority qmme, further delivery
of messages from that queue will be suspended.

(2.4) When the GBCAST mom_ reaches the head of a//ABCAST queues, the
nezt part is begun.

The third part orders GBCASTs relative to CBCASTL We a_ume that the

CBCAST protocol is modified to maintain a lie IDllatp for each process p,
containing IDa for CBCAST mintages that have been placed on the delivery

queue of p. For now, mmume that the list includes the]]_ of a//such messages.
The goal of the protocol is for p_ in G to agree on • list of CBCAST
memmges to he ordered before the GBCAST and to deliver mmm4pm accordingly.
The third phase ezecuUm es follow_

(3.1) The pro_ p initiatiag the protocol contacta all members of G.
(3.2) A _t q emd:)llabm • FIFO _ queue (unle_ one alrudy ezists).

Until tim GBCAST protocol completes, umuges that would have been

placed ou the deliveW m at q by the CBCAST protocok are placed on

th_ qu_ _te_h
(&3) If any message B in IDli_ is in PBUFq and the remaininll destinations of

B include sit_ in (;, q must M_,me that those oim have not yet received

a copy of B. Any such mes_M is Kbeduled for mmsmimion to the
destinations in REM_DESTS(B) _'1G, and q wait_ until the memq_ have

been sent. It then sends IDUstq to p.
(3.4) After collecting these messages, p merges all the lists it has r_:eived, calling

this the before list. It sends the before list to all psrticilmntL When a
participant q receives this list, any message that was transmitted during

ACM Trammctiom on Compu_r Systems, Vo|. $, No. 1, Fe4mmry 1967.

Ra_e Commun_0on m me P_sence of Fakns • 67

step 3.3 must have arrived and is on the wait queue, unless it has already
been delivered. Similarly, during step 1.2 all CBCAST messages from a
failed process were either placed on the wait queue or delivered.

Finally, mseugu are transferred in order to the delivery queue, and normal
deliveryresumes:

(4.1)Each participantq does the following:For each CBCAST 29 in itswait

queue, if 29 is in the before list, or if there is some 29' in the before list and
29 --%29', or if the GBCAST is for a failure of process f and SENDER(29) -
f, then B is added to the list.

(4.2) Any messalres in the wait queue that are also in the be/bre list are now
transferred to the delivery queue, preserving their relative order. The
GBCAST message is then placed on the delivery queue.

(4.3) If there are no other GBCAST protocols in progrse_ p q_pende the contents

of the wait queue to the delivery.qumw and deletes the wait qmmL
(4.4) The GBCAST messages are removed from the heads of the ABCAST

qumwe, allowin¢ ABCAST msesqm to be delivered.

If a failure occurs, any participant can restart the protocol from the bo_nnin_
A_ with ABCAST, participante reply using tim delivembk priority of the

GBCAST meseqe if they know it; all other steps of the protocol are idempotent
and can be repeatedwithoutilleffect.

Couzcmzss. GBCAST is atomic bocmm no participmst can deliver a
GBCAST _ until all have received it; bence, if any delivers it, all can
l_tart the protocoL 4

GBCAST, to the same proce_ group am ordered in the same way at every
member because each GBCAST is aeiped • unique priority value (step 2.3) and
is delivered in rJ_ ord_.

GBCASTs are ordered consisten¢/y with _ to ABCAST# because a copy
of the musage is placed on _ch ABCAST queue, and the second part of the
GBCAST protocol is the eame am the ABCAST protocol

To show that GBCASTs am os'dm,mi in tim same way relative to CBCASTs,
we must show that, if a CBCAST is delivered before the GBCAST at a momber

of G, it will be d_vemd beam tim GBCAST at any other member that it is sent

to. The _s debvemd before a GBCAST at a process q m those placed in

the delivwq queue before the wait queue is setoblish_ as well M the CBCAST,

in the b4bm Bat that am placed in the delivery queue durin¢ mp 4.2. Now, any
CBCA_r im the de_nm_ queue before the wait queue is setabllshed must be in
IDIi_ ia mp _ and is bma, in the b_om li_ Also, ,my mmm_ delivered in
step 4.2 is in the be_bre list or preceda some message in the bq_ovelist. It sufFwN
to show thst any m, msp delivered by q arrives in the wait queue of any other

destinations in G before _ 4.2 is exocuted them. This, bo_v_, is immodiate

because a copy of any such meseap will have been in PBUF, during step 3.3;
hence q did not respond until it had confirmed its delivery.

' By tlw ,am# mmoninf, if one member of • pmt_m gzoup imtiJum • checkpoint using a GBCAST

(Section 3.7). all members that g_y oporetion/l lo,g e_ will do _o -.

ACM TnmN¢_m_ oa C_ Sym_m_ VoL 5. N_ 1. FM_msry INT.

OF PCOA QV,_JiY

68 " K.P. Blrrr_ mwlT. A. Josel_

Selecting some of the messages from the wait queue to be delivered ahead of
others could conceivably upset the CBCAST delivery order. But assume that
CBCAST B is before B' on some wait queue and that B' is delivered during step
4.2, but B is not. Clearly, "_B c_ B', since step 4.1 would otherwise have added B
to the before list. Thus the CBCAST delivery conJtn|inte am respected.

Finally, observe that, because of the flush psrformed during part 1,.the protocol

does not begin executing until all memmlpm from a failed procese [have been
delivered to their destinations. Hence such _ are either on the delivery

quetm for the destinations or on a wait qmmo, if some other GBCAST protocol
was ezecuting at the time. Step 4.1 then ensuras that the GBCAST is delivered

after any other memmje from [. This completes the proof. Q

Opt/m/zat/ons. The GBCAST protocol can be optimized simply by merging
steps together. Moreover, the flush that is done in part I could be invoked directly
from the view management protocol; then, in_ad of doing this on a per-procus
basis, which would be eztremely costly, it would occur on a per-site basis, at

relatively low cost. If this were dons, a two-round protocol would result, not
cmmting the coet of the flush, and performance should be 8_ptable. A method
for controlling the lanl_h of IDlim is given below.

/._¢Jd_process _ v/t, wA Recall from the end of Section 3 that it is d_irabk

for a process group mmber to be able to transmit atomically to all other members
of its group with the mmran_ that the transmission will not iterm in the

protocoL GBCAST can medily be chana_ to pmvido this behavior.
To do so, it is nscmury to Ioociato a lock with the process group view;, while
the _ is lodr_i, new GBCAST, ABCAST, and CBCAST operations cam_ be
initiated. During the first plum, of a GBCAST operation that inemas_ the gnmp
membership, _ leek would be aequln_ if it cannot be _ (beeatm some
othar GBCAST h_ dons so), the GBCAST would be interNptKi and rs_rkd. It

is not noceeasry to lock the view for GBCASTs that do not incma_ the

membership. Once the view is locked, it msflkas to order all pending ABCAST
and CBCAST events before the GBCAST, using the mechanisms discussed above.
The view lock would then be mbased when the GBCAST delivery takm place.

Recall that broedcast pezticipants learn about the faihwe of a coordinator using
the mon/tofing mechanism, which is indslmndlmt of tho process group view
mechanism. Thl tim prNm_ of tha_ locks dram not chanlp the way in which

these protocols tsnninme after failure of the coordinator.

4.4 M Store md o mumd Gnmege Fsc

We nov define an a, mc/az/_ _ore mechmsism, which is used by the above

immoeob to mmmso the information associated with smwaSe IDs. Each site s
mslmm/m • foal store denoted STORE,. The conUmte of • store are tupim

(/g, a//a), whom/d is • _osdm,t ID and _/st is • _ of ram or morn _i,.
A _ of opmrm_m m clMinsd on the store for inch site (them k no facility for

the store at • remote site). The operation ,a_add(Id) cma_ an empty
list for the dmilpmted ID, ,a_immrt(id, amame, value) Kld, an attributs with
name anew and value ua/ue to the list, ot_flnd(id, aname) looks up an amributs,
and ,t_delete(id, asinine) deletes an attribute (but not the 1I)). The spscid

ACM Tnmmt, mms m_C._mFumt S1mumL VoL $, No. t. Feb_maWt_M?.

ReliJ_ __ion in Ule Presenceo(Filures • 69

attribute DISPOSABLE is inserted when an entry will no longer be referenced.

In the ABCAST and GBCAST protocols, an ID becomes DISPOSABLE at • site

running (or completing) the protocol after it transmits commit messages. In the
CBCAST protocol, an ID becomes DISPOSABLE at • site when the correspond-

ing REM_DESTS field is empty.
We now give a method for deleting information associated with • message 1I)

after the ID is marked as DISPOSABLE by some site. The method defines a

de/ere action, which is taken when an ID is discarded; at the end of the section

we give these delete actions. Since copies of messages may be transmitted to •
site while it is running the garbage collection protocol, and message IDs are used

to •void delivery of duplicate copies of messages, some care must be taken to
ensure that copies of • mmmqe will not be received after its ID is deleted.

Accordingly, the algorithm employs an additional field associated with each
message ID in the store, DONT_SEND, which is initially null and subsequently
lists sites that have run the protocol

(1) Periodically, each sits a makes • list of tupl_, (ID, DONT_SEND) for
DISPOSABLE _ It invokes the ddm act/on for each listed ID, and then,
to each ,its J in the sits view, Its • list Im,I contain/_ any ID, that
is DISPOSABLE such that • is not in DONT_SEND,. It acqu/r_ • reed-

lock on the sits view while doing

(2) On receiving a list (/Do, IDa,...), sits b takes the following actions

(a) If IDi is not already in STORE_, it ls added.
(b) The REM.DESTS field a_:iatsd with the ID is made ampty and it is

marked as DISPOSABL_ This I that b will not send additional

copies of the mesup and that tim ID will eventually he deleted from

STORE..
(c) It adds a to the DON't_SEND field mmociatmi with this IX) in STORE,.

After processing the list, b sends an acknowledgment to ,L

(3) After receiving acknowkdgments from all operational _ a delecm the ID,
the DONT_SEND fidd. and other information mm0ckUd with the ID from
STORE,. The DONT_SEND field prevents a site from _ an 1I) to its

store after deleting it, that is, when some other sits executes the protocol to
delete the ID from its own store. Sits a then reluese its mad-lock on the sits

view.

AJ_A,fr _ GBCAST lira no qz,ekl debts action; the priority information

that they _ is _ atltomatica/Jy when the protocol compktes. The
delta ac_m IW CBCAffr k to mmo_ the nmm_ ID from the IDlig of any

p_ tJ_t lies _ • copy of it, mad to deiots the message it.ll from
PBUF,, for m_ _ p at the sits. Thtu the kngth of an IDikt will be
determined by the numher oL active broedcam, which .hould he small

Co_. This foilowe because no sits deimt_ • mmm_ 1I) until °811

operational sites have sent acknowledgnmnte in step 2, but 8ftor step 2c, dupli-
cates of • meass_ will no longer he sent to a sits that hes run the protocoL ['1

ACM_ onC._mpm_Sy_mm,VoL5,No.1. rebam7 t987.

70 - K.P. 8irman and T. A. Josegh

4.5 CBCAST Rush Imitation

Flush is invoked in two ways, each having a slightly different implementation.

When a process invokes flush, the CBCAST algorithm is such that, if any
CBCAST B is active, a copy of B will be present in PBUFp for any process p that

might cake actions causally dependent on the delivej7 of B. Hence it suffices co
schedule all messages in PBUFp for transmission and then wait until all have
been sent, in the sense of Section 4.1.

If flush is invoked for a group address change, a stronger condition is needed,

namely, the fact that there i_ no active CBCAST that could still be rejected. This
is setisfied by doinl a CBCAST requ_ing that group members return an
acknowled4pnant. If this CBCAST is ordered after all m_ that have been
sent previously, the acknowled_nent will not be received until the messages in

question have all been accepted.

4.6 Wk:_Area Networks

The above protocols do not sddru8 interclustor communication but can be
ez_nded to do so. Our approach Mmsm_ that in a _ network the notion of a
site view is meaningful only in the context of a particular clum_r. Accordinlliy,

we do not attempt to extend the failure sgr_ment protocol to include sits,
outside a cluster, lnstoad we _ that a procus monitoring an ezternaL process
(that is, ez_mal to its cluster) loam about the failure of that proeNe indirectly

from a monitoring facil/ty actually resident in the remots cluster. The monitoring

facility of Section 4.1 can be extonded to implement this transparently. Next, we
limit the extent to which CBCAST _ can propapto through the system

by r_tuirin4j that a CBCAST be sent d/rectly to its mmlrnal destinations, instead
of being p_ked, while still _ the mmsmimdon ordering rules given
above (since pmceda is acyctic. CBCAST _ can alwa]m be tmnsmim,t in
the order corrmq3onding to a topoloo:M sort on their c/abeb without doing any
piRybacking). Because CBCAST mmm,_, m sent directly to their external

destinations, the flush phase that pmcedN a hdlure GBCAST need only be run
within the cluster whom a failed process or sits meided. Fussily, we require that

from the first phe_ of a GBCAST or ABCAST protocol, ss well u all
CBCAST _ be sent to local sites before the first transmission to an

extermd site is initiated. This implies that the local pm_ckipmsts MI know of the

protocol befogs any external participant learns of it. Thus, even though the flush
phase of a failure GBCAST is carried mat locally, it will definitsly flush pending
brosdcam when it tufts, unkm all local participants have fs_,d. Monitor, in

the caw of GBCAST and ABCAST this permits a performance optimization
whmeby th, new coordinator can be Iocatmi in the mime cluster .- the initial

on,. The protocols m ocherwi_ unc_ and protein znxq_ that extend over
cluatmr heundariu can be eup_rted tmnspm_ntly. Notice also that it is now

pom/ble to run the garbqe coll.ction algorithm with/n • clusWr. Although it
remains n, ceseary to inform extomal sites when information mmo¢iated with an
ID can be deleted, the_ siUm are never smucae of piJll3toacked CBCAST rues-

seS_ henca they can init_ats the dek_, action for an ID immed/atsly upon
learning that it is deletsble, and the DONT_SEND mechanism is not needed.

ACM T_ on Computer Symmms, VM. 5. No. I, Febesm_ 1987.

Retai_e Communi_tion in the Ptl_mce of Failures • 71

Thus, with minor modifications, fault-tolerant process groups can be supported
transparently in hierarchical wide-area networks. The local protocols are unaf-
fected: hence the approach will take advantage of communication locality. Tuning
the I/O scheduling policies for a network of this sort represents a challenging
problem for future investigation.

4.7 t.iveness

In the interest of brevity, we omit a formal proof that the protocols given above
are free of deadlock and UveloClL

5. APPUCATIONS

A local-area implementation of the communication subeyutem propoasd here is
being undertaken as part of the ISIS project at ComelL ISIS is a distributed
computing system that provides several forms of support for fault.tolerant

computing. A prototype that was completed in January 1985 transforms nondis-
tribut_ abstract type specifications into fault-tolerant, distributed implementa-
tions, called ra///ent objects [2]. RNiUent objl_s achieve fault tolerance by
replicating the code and data managed by the objoct at more than one alto. The
rasulti_component, synchronizetheiractions to providethe effectofa

siteobject.In the presenceoffailures,any ongoing operationata failedcompo-

nent iscontinued by an operationalone. Also,a resilientobjectcontinuesto

acceptand processnew operationsas long as at leastone component isopera-

tionaLFinally,failedcomponems recoverautomaticallywhen the siteatwhich

they is
The iaitialversionof ISIS used a simplecommunication layertbat provided

an atomicbroadcastwithno orderingpropertieLThis was unsatisfactoWfortwo

maeon_ First, the impkm#ntation grew wry complex becamm of the need to
include, in various parts of the system, protocols to preclud# orderinjs that might

lead to inconsistenci_, especially in tim pre_nce of fallur_ Second, the high
defpree of synchronization result/rig bom these protocols lowered wmm per-
formance. When reimplementod using a pmliminaw v_mion of the primitiv_
presented here, tim system bacmsm much eimpkr, aud perfonngnce improved

owing to the .h_y concurrent nature of the primitive.
The overall stmcunu of tim new mystmn is layermi (m Fisum 2). The lowest

levels, which we view as part of the kenml, include the site view manager, input

filter, and output filter ckecn'bod mu4i_. Also included in the kernel are the
amm¢iative store and the per*process buffer pooL A 8qp,chd Imrnel procasa is run
at high priority to impknmnt the pmtocok. Client p_ communicate with
one anothmr eitlMe directly usin8 tho protocols dmcribed bore, or indirectly using

resilient ob_cm and fault-toimat _ boa_ [3]. The latter provi_ ms
asynchronous imtmqam to ahazud data strucmr_ on which information can be

with vmTin8 leveb of dmmdinson tim int.ndat um(thi,
pm_lizm will be familiar to titre, from the artificial intellizen_ community).
High-level support for proceas jroupe includu • proceas Stoup manaser, which
maim in creation, _on, and communication with p_ groupL and a
communicat/on switchboard that faeilitatm connect/on astabibhment.

ACM Tmmm_imm u Compmm, S_tomL Val. _ N_ I, Y,b_m_ tit/.

72 - K.P. Bbyr_ a_ T. A. ,k)sel_

The communication primitives are used at all levels of our current work. In
the interest of brevity, however, we restrict ourselves to a survey of just a few

ways in which they are employed.

5. I Updating Replicated Data

When replicated data are updated, care must be taken to ensure that the updates
occur in the same order at all copies. Otherwise, the copies can become incon-
sistent. In an environment where no broadcast ordering properties are guaran-
teed, this is done by preceding an update to a local copy by a broadcast to the

remote copies and waiting for confirmation from the remote copies that the
update has been carried out before allowing another local update to occur. This
kind of synchronization means that the rate at which updates can occur is limited

by the time it takes for a message to travel a round trip, which can be unacceptably
high. If CBCASTs are instead used to instruct remote copies to perform updates,
an update can be considered complete when the local update is carried out. No

further synchronization is required, because the properties of CBCASTs pJar-
antee that all the copies receive the update, and do so in the required order [12].
The rate at which updates can now he performed is now the rate at which local

updates can be done, which is usually much higher than the previous case. At
the same time, the protocol for carrying out a replicated update is much simpler,
as it consists of a single CBCAST.

5.2 Coamutcr_ r_xumJu,_

In ISIS, one of the components of • resilient object is desiznated m the coo_r_smr
for the execution of a particular operation. The others, ita coho_s, act as pmmve

backups. If the coordinator fails, a cohort takes over and metsrte the rsquwL
The proam group abstraction fscilitaUm the impiomentation of coordiutor-

cohort computationL The components of a resilient object are placed in the same

process group, and each request to perform an operation is transmitted to all the
componsnte using CBCAST. Since each component haa the same process group
view, the components can independently decide on • unique coordinator for the
request by using the same alsorithm, without running an _ment protocol 6

The GBCAST o_bnu8 propertiaJ prevent inconsistencies from arising when
failunm or recoveries occur. After • failure, cohorts can pick • new coordinator

consistently, and becsuse all have roceivod the same mmmzes from the previotu
coord/nawr, the object data are in a consistent state at all componentL When •

component rocovem, it uses GBCAST m rejoin the group; hence all the opera-
tiemsl components receive the GBCAST in the Jame state, and any one can
Umafsr data to reinitialise the recoverins componen_

5.1 Mmsg LmB on 0et8
Lock-baaed concurrency control is the most common method for obtaining
serializability [1, 10]. The usual locking method for replicated data is to obufin
write-locks on all copies and read-locks on only one. This means chat, if the site

'In ISIS thia is done u follows: Ifa mque_ amws hum s/ws, the coord/uwr ia the s/re t in the
proc_e _ v_w mmumsinz a_(t - ,). This nonnsUy Iocstm the ax_li_tor for • computation
attheminesiteasthesitewherethe_quat orisinau_ which improveeresponsetime.

ACMTnmuo_om on Coml_UrSylams. VoL5. No.t. Fealty 19@7.

Reilal_ CommtmCationin tttePre_m_ o(Faikr_ • 73

at which a mad-lock is obtained were to fail, all information about this read-lock

would be lost. In the ISIS recovery scheme, as in many that use a saved stats for

recovery, it is necessary for the executions to be deterministic, and a change in
serialization order after failure would violate this. This implies that, for ISIS to

provide roll.forward executions after failure, information about read-locks must
be replicated as well. Unfortunately, whereas replicating writs-locks is reasonable,
acquiring read-locks at all sites would be terribly inefficient. Instead, the ordering
properties of the broadcast primitives are used to obtain an equivalent effect.

A read-lock is first obtained locally. Then, a read-/och reg/strafion message is
CBCAST to the other copies of the data itsm_ The sender immediately continues
execution, as if its read-lock were already replicated, although the message may
not actually have been delivered anywhere. If the sender fails before any message
leaves the site, the effect is as if the read never occurred (recall that a failure

destroys all information at a site). If, on the other hand, a site ha= received any
message m sent after the lock acquisition, the GBCAST protocol for the failure
will ensure that the read-lock registration message is delivered before the failure
is detected by the processes managing the lock. Thus the read-lock behaves like

a fully replicated one.
Unlike a read-lock, a write-lock must be explicitly granted by all components

of an object. However, a deadlock could occur if concurrent write-lock requests
on the same data item are granted in different orders by different componants.

Thi= problem can be avoided by using ABCASTs for writo-lock acquisition
requests. If the data item name is used as an ABCAST label, write-lock
on the mama data item are ordered in the same way at all components, and

deadlock is avoided.

5.4 _ lutms

A prototype communkation layer similar to the one described hem h_ been in
operation since January 1966 [2]. Instrumentation of a collection of resilient

yielded performance mussuras that shed light on the way in which throe
primitives can affect a rind distributed =yste=L One, the rwpomm tim= for a
typical request, mmmu_ the critical path before a reply can be ismmi to a caller.
We considered a fault-tolerant file object distributed to three sitas (SUN work-
stations). A mquast that acquitm a replicated write-loc_updates • replicated
data item, and then responds to its caller sends its reply after about 0.3 second;

additional updates delay the rmpomm by 0.1 N¢ond each (the difference mfle_
the one-time coat of concurrency control). When ISIS is run in • sym:hronow

mode, verifying that inch update h_ actually completed before the coordinator
undertakes any subasquent operations, such a computation requlrm 0.86 second,

with additkmal upda_ requlrin8 0.5 ascond esch, Moreover, the performance of
the synchsmmm vemion desrsd_ as the number of sdtas incmgas, whereas the
concumaJ u 8ivas the _me performanco r, pmileas of the number of

_ Thus, concurrent commun_tion primitivas can have a sub-

,ta=ial impm oa pm'formance.
When • hish level of concurrency is achieved in a distributed computation, it

can remain active after replying to the process that initiated it. To isolate the

effect of concurrency on the above fi4pmm, the total ekpmd time between the

ACM Tmlmu_om oa Compuu.r _Imm, VoL 5. N_ 1, rebmuy tgs?.

7'4 • K.P.Bil_ anclT.A.,A:xm_ll

issuing of the request and the true termination of theoperation can be measured.
In ISIS, we find that a single asynchronous update terminates about 0.2 second
after returning a result, with additional updates delaying termination by about
0.08 second each, and with Linear degradation as the number of sites increases.
In practical terms, when a resilient calendar application was executed on two
SUN terminals sitting side by side, a calendar update caused both screens to
refresh essentially simultaneously. Considering that this version of UNIX e on
the SUN 2 is not known for blinding speed, the performance we have achieved

is completely satisfactory.
Finally, we ezamined the effect of piggyb_klng on the performan_ of the ISIS

prototype. To do this, we placed the file object under a "distributed load,"

presenting operations to it at multiple sites and measuring the mean delay before
a response was computed and returned. As the load rises, a backlog of esynchro-
nous updates begins to form, and the CBCAST implenmntation takes advantage
of thla to begin piggybacking multiple messages on each packet. Because the

computing time in a simple object such as this is larply spent reading request
messages, and only a small percentage of these requite a responso, efficiency can
rise dramatically ff a single incoming packet carries several memmges. Precisely
this effect was obsorvec_ For objects distributed over small numbers of sites (two
to six), performanoe under relatively heavy loads (a load of 7 operations per
second) was nearly as good as that for a nondletributed object under a very light
load (<1 operation per second) and far better than that for a nondletributed

object under the same heavy load. This is bectuas the concurrent update
rithm concentrates the real processinj at a coordinator (cohor_ do very little).

Thus, if different requests have different coordimttore, each does lees work than
a sinjle coordinator performing both rKitmmL Moreover, the benefit of replica-
tion more than outweighs the overheJKi aseoclated with mpj_chronously broad-

casting the updates to cohort processes. Thus, in ISIS at least, the primitives are
treumndously valuable.

To summarize, for a variety of distributed applications in ISIS, and no doubt

in other systems as well, tlm communication primitives described in rids paper
permit extremely good perfo_but with the ability to tolerate fsflm as
well Moreover, they actually simplify the dasi_ of distributed software and

reduce the proimbility that subtle synchronization or concurrency related bup
will arise. The fault-tolerant process group approach to distributed computing

appears to be a major improvement over 81ternstive prol_mmfi_ methodologies
for this domain.

6. UMITATION8

Osm wmknmm of the work described in this paper is its tendency to block in the

pemance of pertitionlnz failunm when two or more subzrou_ of operational sites
within which communication remains pouible, but between which it is

dJsmdai or impartible. We are now in_ the achq_tion of nmboda
fromm Abbedi _d Toue8 [8] andEl _ e_ _L [gJ to sddrun this IS_L We
m also enminin8 the poasibility of intqp_tin| communication primitiv_ with

' UNIX is a trsdemarkof AT&T B,dl Labormorim.

ACM Tramm_ionJ on Computer Syswms, VoL 5, No. t, rdmmw 1989.

OF POOR QUALITY

Rek_e CcmmunicaOoninme Preesnceof Fa_ns • 75

synchronized clocks for use in shared memory systems and tightly coupled
multiprocessors.

A second limitation is our implicit assumption that within each cluster failures

and recoveries will be sufficiently infrequent to permit the site view protocol to
terminate. We believe that these assumptions hold in most existing distributed
systems. In leas benign environments, however, where this form of stabilization

might not occur, it is not clear that our approach to fault tolerance would perform
satisfactorily.

7. CONCLUSIONS

The experience of implementing a subetantial fault-tolerant system left us with
insights into the properties to be desired from a communication subeystem. The
broadcast primitives described in this paper pnmnt a simple interface, achieve
a high level of concurrency, can be used in both local, and wide-area networks,
and are applicable to.software ransing from dietn"outed database systems to the

fault-tolerant objects and bulletin boards provided by ISIS. Because they are

integrated with failure-handling mechanisms and respect des/red event orderinp,
they introdt_ a desirable form of determinism into distributed computation

without compromisinl efficiency. A consequence is that hi_-knml ail_orithms are
greatly simplified, reducing the probability of error. We believe that this is a very
promising and practical approach to building larp fault-tolerant distributed
systems, and the only one that leads to confidence in th. correctness of the
resulting so.,am.

The evolution of this paper has been infltmncad by many of our collmlues, to
whom we am deeply grateful. Particular thanks go to Amr El Abbedi, Oudp

Babaoslu, Eric Cooper, Thou Rmuchla, and Pat Stepimnmn for their many
detailed comments. We am aim indebted to Jay Mism and Mani Chandy for
discussions and comments about a very early dra_ of this paper, to Dale Skesn,
who helped found the ISIS gnmp and waa responsible for the orderinll algorithm
used in the ABCAST protocol, and to the members of the ANSA project in
Cambridim, England, for stimulati_ discussions about the issues raised herein.
Finally, the comments of the referees am gratefully acknowled_d.

REFERENCES

t. BmmsmN. P. A., _,qoGooDmm, N. Co_-umm_ conuoiin dismb_,_l _ ram.
ACM Com_AL Sw'u. 13, 2 (J.M 1981). 186-221.

2. Butmm, K. _ sml emilalMitty in the lSIS sysmm, la P_mm6_ of t_ lOOt ACM

Symlm m Olmmtiq _ _ O0er.Sy_ Ray. l& $ (Dec. 19e6), 79-86.

3.BmMa_, K.,_, T.,&_nmJc=, F.,_o S_mnn_soN, P. Pn_ withshared
Ixdle_nbumds_-_ dksribuudWmms. T,eh.R_ TitM-7"_,_ o(Compu_r
Sck_, Com_ U_v. Au_ I_

4. Cmmo, J.,__mt, N.K R_Isbls _ pro_:ob, ACM Tvm_ CompuL $_ 2,
3 (Aug. IM4), 261-2T&

5. CHnrroN, D. it., _0 Zw_umm, om., W. D_ pmeum IrmU_ in th,, V k,m'mL ACM
Tran_ Comp_o.5y_ 3, 2 (May 19e6), 77-107.

ACM Tmm_b_m ea Cemlmmr Sys_ms. Vd. 5, No. t, Febesmry 11_7.

76 . K.P. Bimlan and T. A. JoMph

6. CooPJ'a, E. ReplicauJd d/gribuusd prolp'snu,. In Pro_e_zp of the lot& ACM Sympomm_ on
Open.in# System= PruJeq_es:,Oper. SyJt.Rtv. 19,5 (Dec.19_5),63-78.

7. C_SIqAN, F., AGHILI, H., STRONG, R., AND DOLEV, D. A_m_ brosdcs_ From simple meuap
• fl_ion to Byzantine qn_ment. IBM Tich. Rsp. RJ 4540 (_668). Oct. 1984.

8. EL Au,tm, A.. AND TOUZG, S. Avm_bi"w in pa_ibon_ replicated da_bs_s. In P_n_
o[the 5/:h ACM Sympawmm on Princq_ o[_ System (BcxBton, Mm_, Mar.). ACM, New
York. 19_.

9. EL ASSAm. A., SKIn, D.. AND CIWHAN, F. An e_nt algorithm for _lica_d ds_
manqement. In Pn:c,rt, dm#s o(ehe 4oh ACM Syn'q_mm on P_ncq_rs o/Databa_ System
(Portlan_ Ores., Mar.). ACM, New York, 1908. pp. 215-229.

I0. GzAv, J. Nou_ on datsbs_ o_ra_u_ mm_ In 0_ S_,_" An Advanced Cow_,

G. Coos and J. Har_mann_ Ed_ Lacm_ Nozm in Co_ Scw_c_, voL 80. Sprin_r-Veri_l,
New York. 197S.

II. GOODMAN, N., SMJ_N, D., C_N, _L, DAYAL U., 11'O3[,S., AND RUm, D. A mcov_y a_on_m
for • _ datsba_ sys_sm. In _ o[the 2_d ACM Sympo_mm o_ Pr_.ip_ o(

Sy_wu, (AthuzZa, GL, Mu.). ACM, New York, 19_, pp. 8.-.t_.
12.Josm, u, T., _mo Blm/_, K. Low _ msnqmnent of rsplicnJd data in faulz-zolemnt

_fistributod systems. ACM T_m,. _ Sy_. 4. I (Feb. 1906), 54-70.

13. L, uporr, r_ T',me, clocks, and the onieri_ of emm in • _ ram. Comm_ ACM
21.7 (July 19"/8). 588-,566.

14. SCHIJCHTING, R. D.,MiD _'HNllIDSIt., F.B. Fs/I.4tW Imx:emom: An q_proech to dee/in/hi
fault-wlmmt comput/_ _ ACM 1"ram.C.Omd,__ Z. 3 (Aus. 1_). 2_-23S.

15.ScxNmon, F.. Gram, D, _,J_n _Jcm'_a, R. Fmdt-mlmu_ bemdc, m_ _ C_

Pn_mm. 4, 1 (Mar. 1984). 1-18.

ZT. Sr,,zDm, D. Deu,rmininsthols_FAmeeeotofs_LACMTYmu_Compu_Sys_3, Z (Feb. 1M5),
15-30.

R,c,iv,dSepumherz9_5;rwimd Aueu_ ZgM;sccepudAueu_ zgM

ACM Tmmmetioa* ms Comlmt_ S*/s_ms, VoL 5, No. I. P'dNum_ 196"/.

Enclosed is a copy of a technical report produced by the ISIS

group. This report was produced under contract number NAG2-593.

Respectfully yours,

Susan Al]en,

ISIS Project Secretary

(607) 255-9198

Tills REPORT IS UNCLASSIFIED AND MAY BE DISTRIBUTED WITItOUT RESTRICTION

